Causal Discovery in Linear Models with Unobserved Variables and Measurement Error

¹Georgia Tech ²Missouri S&T ³EPFL ⁴CMU & MBZUAI ⁵Boston University

Prev. work

Motivation

The presence of unobserved common causes and measurement error are two of the most limiting challenges in causal discovery.

Existing work:

- Latent variable (LV): Unable to orient most edges, or provide non-trivial conditions for uniq. identifiability
- Measurement error (ME): Assume that each latent variable has at least two measurements
- Ours NeurIPS'22: Considers LV or ME separately

This work studies the extent of identifiability from observational data when both challenges co-exist by leveraging special properties of measurement variables.

Linear LV-SEM-ME

Two sets of variables V = [H; Z; Y] (underlying), X

- V follow a linear SCM: $V = \mathbf{A}V + N_V$
- Y : Observed (without error)
- Z: Measured variables, with measurements X
 - $\bullet \quad X_i = Z_i + N_{X_i}$
- *H*: Unobserved (neither observed nor measured)

Canonical form: Measured leaf (mleaf) variables do not have exogenous noises; unobserved variables are roots.

• Define the set of cogent variables V^C as variables in V that are neither H nor mleaf.

We know whether each variable is observed ("Y") or measured (" χ ").

Identification Assumptions

Separability: Mixing matrix **W** transforming exog. noises to observed variables ([X, Y]) can be recovered from observational distribution.

- $[X;Y] = \mathbf{W} \cdot N$; **W** can be derived from **A**
- Satisfied when all noises are non-Gaussian
- W* corresp. to ME-free model can be deduced

Two-fold faithfulness assumption:

- (a) Conventional (total causal effect not zero);
- (b) Prevents measure-zero parameter cancellation or proportionality among specific edges

Minimality: Of the number of H with the same \mathbf{W}

Provide equivalent graphical condition

Identification results & Algorithm

Theorem: Under conventional / LV-SEM-ME faithfulness assumption, an LV-SEM-ME can be recovered up to its AOG / DOG equiv. class (EC), where models in the same group have the same W and AOG / DOG.

Ancestral / Direct Ordered Grouping (AOG / DOG)

Partition variables in V into distinct groups:

- 1. Assign each cogent variable to a separate group.
- 2. Assign each unobserved / mleaf variable either to one of its children's / measured parents' group, or a separate group based on different graphical conditions for AOG / DOG (see the paper).
- DOG is a finer partition than AOG, hence DOG-EC is a subset of AOG-EC.

- The induced structure on each group is a star graph
 - Define the center of the "star" as the cogent var.
- Each model corresponds to a distinct choice of the centers of the stars (or their corresp. exogenous noises).
- Models in the same DOG-EC of an LV-SEM-ME have the same unlabeled graph structure.

Algorithm 1: Recover all models in the AOG / DOG Equivalence Class

- 1 Recover the AOG of the true model (see the paper). Initialize $\mathcal{M}_{AOG} = \emptyset$.
- 2 for all possible selections row, col of the centers and the corresponding exog. noises in the groups do
- Recover A using sub-matrices of W^* partitioned by row and col.
- Add **A** to \mathcal{M}_{AOG} .
- **5** Select \mathcal{M}_{DOG} as the set of models in \mathcal{M}_{AOG} that have the fewest total number of edges (non-zero entries) in A.

Simulations

Neg. Control Outcome

Front-door model

Instrumental Variable

Relative	DOGEC (ours)			GRICA			lvLiNGAM			Cross-Moment		
Error	Mean	20%	80%	Mean	20%	80%	Mean	20%	80%	Mean	20%	80%
NCO	0.08	0.06	0.11	0.38	0.30	0.43	1.15	0.88	1.49	0.08	0.04	0.10
${\bf Front}$	0.02	0.01	0.02	0.46	0.35	0.57	0.84	0.60	0.93	0.23	0.03	0.23
${f IV}$	0.19	0.02	0.36	0.50	0.37	0.59	0.84	0.69	0.99	1.33	0.49	1.21
Union	0.11	0.08	0.14	0.39	0.30	0.42	0.73	0.28	0.89	0.30	0.23	0.38

- Estimate the edge weight (direct effect) of $Y_2 \rightarrow Y_3$
- Baselines: Require non-Gaussianity and known graph