Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data

Yuqin Yang*1 Saber Salehkaleybar*2 Negar Kiyavash2

¹Georgia Tech ²EPFL

*Equal contribution

NEURAL INFORMATION

Motivation

Causal structure learning from interventional data

- We may not fully control the interv. target
- Intervention is done by an unknown source

Task: Learn interv. targets from multi-domain data

Existing method: (possibly a byproduct)

- Limited to linear systems
- Requiring exponential CI/invariance tests
- Unable to handle latent confounders

Model Description

- SCM: $X_i = f_i(PA_i, N_i), X_i \in \mathbf{X}$ not given as input
 - Partitioned into [O; L] under latent conf.
- Soft intervention: $X_i = f_i(PA_i, N_i')$
- We collect data from D domains

 $\mathbf{T} := \{X_i | \exists d, d' \in [D], p_d(N_i) \neq p_{d'}(N_i) \}$

• Goal: Recover $T (T \cap O)$

- Two obs. var., one latent
- Two noises change across environments

We propose Locating Intervention Target (LIT) algorithm, which includes Recovery phase and Matching phase.

Recovery Phase

Recover the noises $\mathbf{N_T} = \{N_i | X_i \in \mathbf{T}\}$ up to permutation and component-wise invertible transformations using contrastive learning approach.

- Mixing function: X = g(N)
- ullet Auxiliary / domain variable U

Proposition 1:Assume $\min(D-1,|\mathbf{O}|) \geq |\mathbf{T}|$. Under certain conditions on \mathbf{N} , the recovery is possible when:

- a) $\mathbf{L} = \emptyset$ and \mathbf{g} is invertible;
- b) $\mathbf{L} \neq \emptyset$ and \exists invertible $\tilde{\mathbf{g}} : \mathbb{R}^{|\mathbf{O}|} \to \mathbb{R}^{|\mathbf{O}|}$ s. t.

 $\tilde{\mathbf{g}}(\mathbf{O}) = (\mathbf{N_T}; \mathbf{V})$, where $\mathbf{V} \perp \!\!\! \perp U$ and $\mathbf{V} \perp \!\!\! \perp \mathbf{N_T} | U$.

Invertibility holds when the model is a linear SCM, nonlinear ANM, or $\{f_i\}$ are MLPs with ReLU activation function and positive coefficients.

Matching Phase

Match the recovered noises in \tilde{N}_T to N_T by comparing between \tilde{N}_T and X (or O)

T-faithfulness assumption

d-separation between noise and observed variable on the augmented graph is equivalent to independency.

Matching Phase (Cont'd)

- Indicator set $\mathcal{I}: \mathbf{I}_i = \{ ilde{N}_j | ilde{N}_j \not\!\!\perp\!\!\!\perp X_i \}$
 - Includes all noises in $An(X_i) \cap \mathbf{N_T}$

Matching under causal sufficiency

Theorem 1: The intervention targets can be uniquely identified based on \tilde{N}_T , X and \mathcal{I} using three conditions.

- LIT: Checking Cond (I) (III) for all variables
- Requires quadratic CI tests: Bounded by $|\mathbf{T}| \cdot |\mathbf{X}|^2$

Algorithm 1: LIT algorithm 1 Obtain $\tilde{\mathbf{N}}_{\mathbf{T}}$ and \mathcal{I} ; $\mathbf{U} \leftarrow \mathbf{X}$; $\mathbf{K} \leftarrow \emptyset$; 2 for $X_i \in \mathbf{X}$ do 3 | if (I) holds then remove X_i (from \mathbf{U}); 4 | else if (IV) holds then remove X_i ; // latent 5 | else if (II) holds then add X_i to \mathbf{K} , remove X_i ; 6 Partition \mathbf{U} into disjoint subsets $\mathbf{U}_1, \cdots, \mathbf{U}_r$ according to the indicator sets; 7 for $\mathbf{U}_i \in \{\mathbf{U}_1, \cdots, \mathbf{U}_r\}$ do 8 | Add $X_{i_k} \in \mathbf{U}_i$ satisfying (III) to \mathbf{K} (resp. variables not satisfying (III-L)); 9 return \mathbf{K}

Matching under latent confounding

Theorem 2: By adding Cond. (IV) and changing (III), LIT can return a superset of the true intervention targets.

- Graphical characterization: Auxiliary graph
- Can handle latent intervention targets, i.e., $\mathbf{T} \cap \mathbf{L}
 eq \emptyset$
- More informative than baselines when $\mathbf{T} \cap \mathbf{L} = \emptyset$

Simulations

- Compare the recovery of the intervention targets
- PreDITEr: linear-Gaussian; UT-IGSP: causal sufficiency
- # of CI tests: LIT ~80; PreDITEr ~30000