Causal Discovery in Linear Latent Variable
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Motivation

There are complexities in real-life data that
make causal discovery challenging
= Two main sources of complexities: Latent

confounding and measurement error

Majority of causal discovery methods assume
that there are no such complexities in the

system

= Leadingtoincorrect recovery on real data

Model Definition

Linear SEM with Measurement Error
(SEM-ME)

= Underlyingmodel: V = CV + Ny,
= / can be partitionedinto | Z; Y]
» Y :Observed variables

Measured without error
 / :Unobserved variables
Measured with error: U, = Z; + Ny,
= Canonical form:Without loss of generality,

unobserved leaf nodes (u-leaf nodes) are

assumed to have no exog. noise terms [1]
Our focus

Canonical Model

Linear SEM with Unobserved Roots
(SEM-UR)

H=Npg, X=BH+AX+ Nx

Latent variable Observed variable  Adjacency matrix

= Assuming latent variables to be roots
does not affect the estimated total
causal effects among observed variables

Assumption 1 (Separability): Mixing matrix
transforming exog. noises to obs. variables
can be recovered from obs. distribution

» Satisfied when all noises are non-Gaussian

Mapping Between ME & UR Model

Mapping between the weighted causal diagrams of a

SEM-ME and a SEM-UR:

= u-leaf <> latent = non u-leaf <> observed

= Reverse all edges

Theorem 1: The mixing matrix of the models under the

mapping are transpose of one another.

Remark:Any identifiability result based on mixing matrix

for one model can be translated to the other model.

Example

Identifiability Results

We characterize the extent of identifiability for both

models under mild assumptions.

Assumption 2 (Two-fold faithfulness)

= Part (a): Conventional faithfulness in linear models
= Part (b): Prevents certain measure-zero parameter
cancellation or proportionality
- Strictly weaker than bottleneck tfaithfulness [2]

Example o« Zy=(b+c)Zy+ Ny,

+ The causal effect of Z; and Z»
on Z4 can be summarized by Z5
alone, due to the parameter
cancellation on the red triangle

Ancestral Ordered Grouping (AOG) and
Direct Ordered Grouping (DOG)

Variables are partitioned into distinct groups such that:

= Each group contains at most one non u-leat node

= Graphinduced oneach group is astar graph

= u-leaf nodes are assigned either to the group of a
parent or a separate group based on different
graphical conditions (see the paper)

= DOG s afiner partition than AOG

Identifiability Results (Cont’d)

Theorem 2: Under Assumptions 1 & 2(a),a SEM-ME

& a SEM-UR can be recovered up to its AOG
Equivalence Class (AOG-EC).

Theorem 3: Under Assumptions 1 & 2, a SEM-ME &
a SEM-UR can be recovered up to its DOG
Equivalence Class (DOG-EC).

(1) Order among groups Yes Yes
(i) Edges across groups NO Yes
(1) Center of each group No NoO

Remark: Model can be identified by the choice of
the centers of the stars (or their corresponding

exogenous noise terms) in each group.

Example

AOG

- Edges across groups can be identified for
DOG, bot not for AOG.

DOG

Corollary: The structure of a SEM-UR can be
uniquely identified.
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DOG Recovery Algorithm

Proposition: Under Assumptions 1 & 2, any
model that belongs to the AOG-EC of the ground-

truth but not the DOG-EC has strictly more edges.

1) Recover the mixing matrix from observed data.

2) Return the AOG of the model by checking the
support of the mixing matrix. (See the paper)

3) For all possible choices of the centers, find a
choice that leads to the graph with fewest
number of edges in the recovered model.

Simulations

We compare the performance of our DOG
recovery algorithm with AOG-based algorithm [3]
and LINGAM on both models under two settings.

(1) A noisy version of the true mixing
matrix is given as input
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(2) Synthetic data with non-Gaussian noise

UR (Matrix A) UR (Matrix B)

0.8 1.00 -

0.6 0.75 A

0.4 - 0.50 H

SHD / Edge
o
AN

05 - 0.25 4

0.90 1% 0.9 1<

0.85 A
0.8

0.80 A

F1 Score

0.7 -

0.75 A

Obs. Variables (|U| + |Y]) Obs. Variables (|X|) Obs. Variables (|X|)

—e— DOG, N=500
—e- DOG, N=200

- N:Sample size / Number of obs. variables
- Estimate the mixing matrix from data using
Reconstruction ICA
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Results show that our algorithm outperforms AOG-
based method, and both outperforms LINGAM.

This demonstrates the necessity of using methods
designed specifically to handle complexities.
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