Causal Discovery in Linear Structural Causal Models with Deterministic Relations

Yuqin Yang¹ Mohamed Nafea² AmirEmad Ghassami³ Negar Kiyavash⁴

¹Georgia Institute of Technology ²University of Detroit Mercy ³Johns Hopkins University ⁴EPFL

Classes of linear SCMs

Linear G-SCM:

Parents Sources
$$x = f_x(Pa(x)) + g_x(S(x))$$

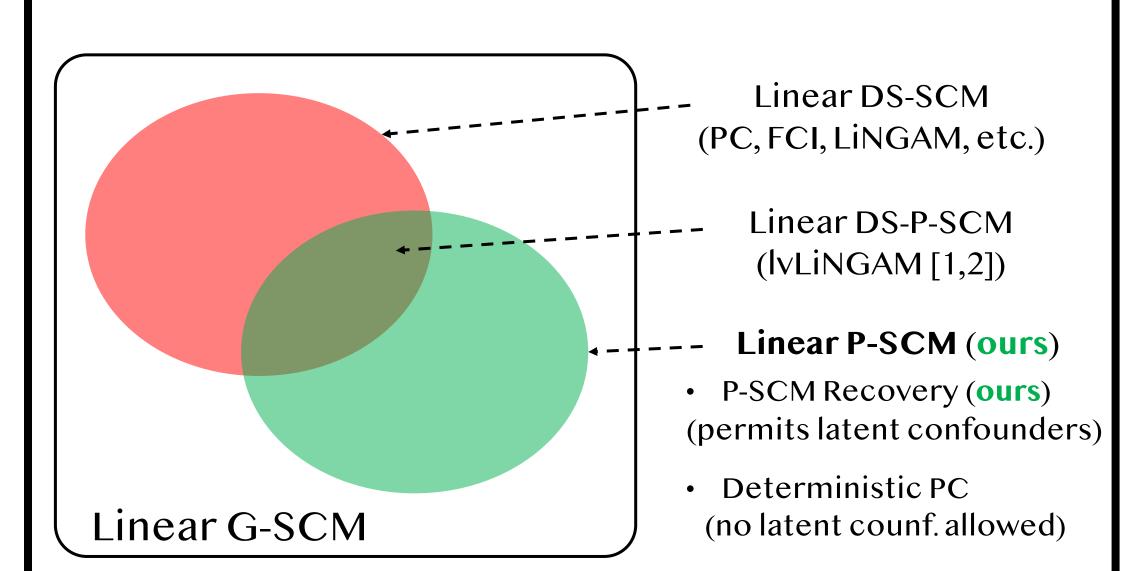
Observed variable Not necessarily linear

Linear DS-SCM:

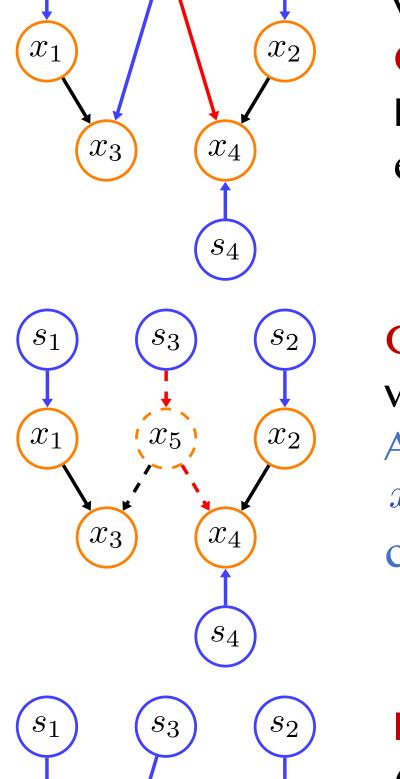
- S(x) contains at least one distinct source (DS)
- No obs. variable can be a deterministic function of its obs. parents and/or latent confounders

Linear P-SCM (ours):

- S(x) does not necess. have a distinct source No distinct source \equiv deterministic relation
- Linear latent confounding: $g_x(S(x)) = \sum_{j=1}^m b_j s_j$
- Can be used to model influence propagation

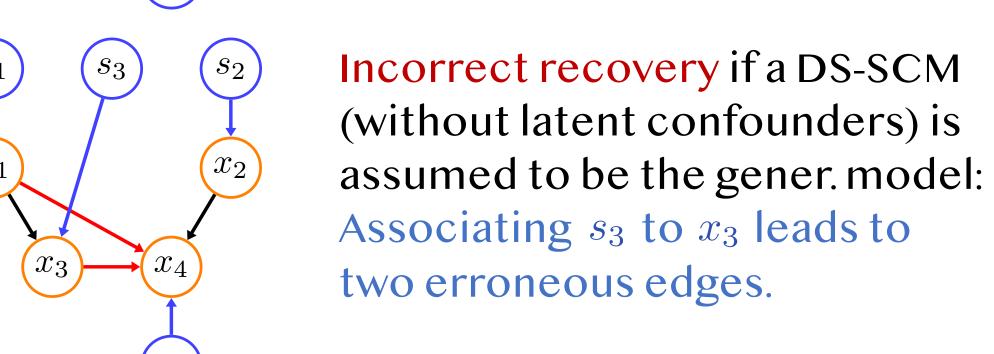


Example: Failure mode of DS-SCM



Ground-truth with 4 observed variables and 4 sources. Can be modeled as a linear P-SCM as it allows for shared exogenous connections.

Cannot be modeled as a DS-SCM with latent confounder: Assuming a latent variable x_5 , x_3 has no distinct source component (i.e., deterministic).



Comparison with linear DS-SCM

P-SCM Model Assumption (weaker than DS)

Assumption 0: Every obs. variable has strictly more source components than its parents

Assumptions	DS-SCM	P-SCM
(i) Distinct source	Yes	No
(ii) Assumption 0	Yes	Yes
(iii) Linear latent confounding	No	Yes

- If Assumptions (i) and (iii) are both satisfied, then the resulting model (DS-P-SCM) is the intersection of DS-SCM and P-SCM
- Majority of works on linear causal models in fact considers DS-P-SCM; our results strictly expands the considered model space

Conditions for unique identifiability

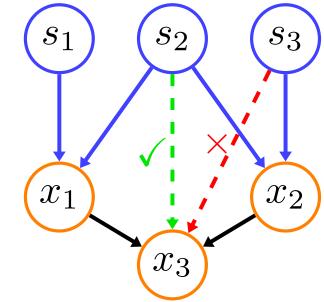
Necessary & sufficient conditions under faithfulness & source separability

Condition 1: Unique component condition

- Prevents certain exogenous connections: a) Unique component(s) in possible parents
 - b) Shared component(s) in possible parents with no unique components

Example

• s_3 is a u.c. of x_2 ; it is only connected to one parent of x_3

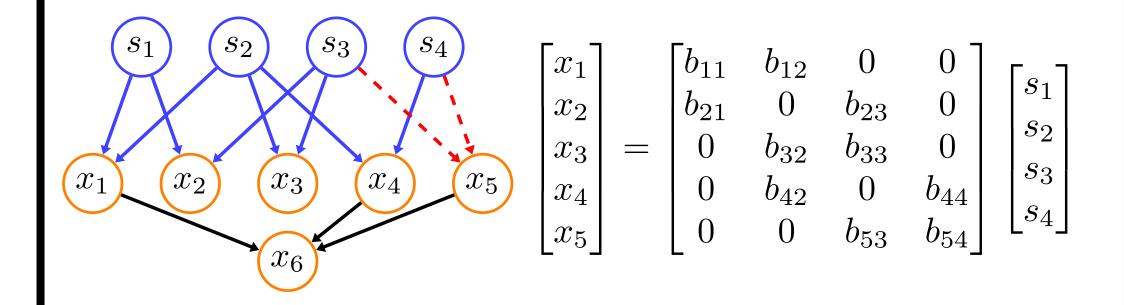


- If the red arrow is present, then there are 2 paths from s_3 to x_3 and we cannot recover either one
- If the green arrow is present, then we can recover a_{31}, a_{32} (using the corresponding u.c.)

Condition 2: Marriage condition

 Ensures that the possible parent set has a number of exogenous connections sufficient for recovery

Example



- $x_5 =$ linear combination of $[x_1 : x_4]$
- The causal effect of x_5 on x_6 can be replaced by this linear combination
- This will not happen if and only if $\forall X \subseteq [x_1 : x_5] : |X| \le |\text{Source components of } X|$

Main result

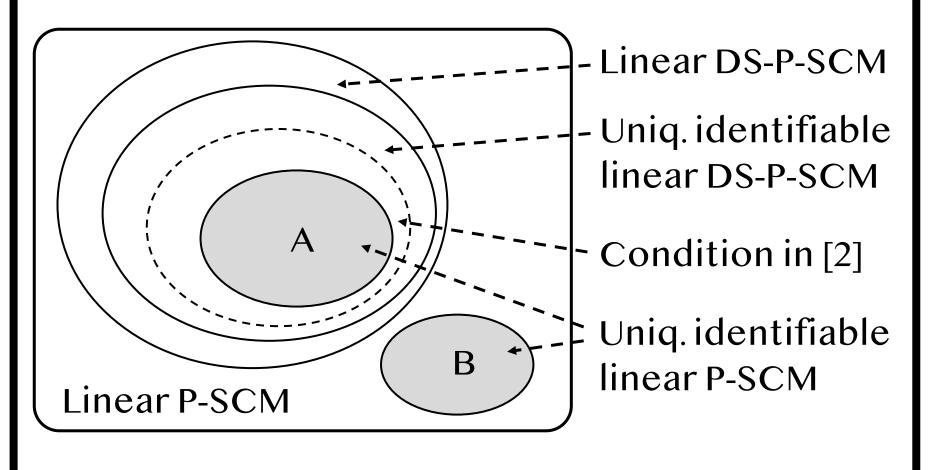
Theorem 1: Under faithfulness & source separability, a linear P-SCM is uniquely identifiable if and only if Conditions 1 and 2 hold for every observed variable.*

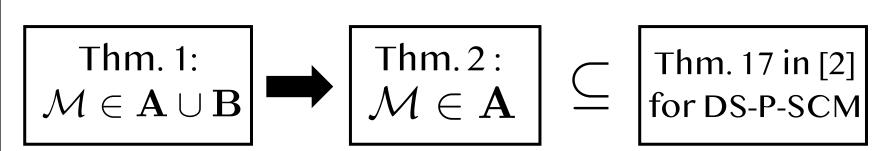
*Definition of unique components for general structures, and full statements of Conditions 1 & 2 can be found in Section 3 of our paper.

Reduction of the conditions

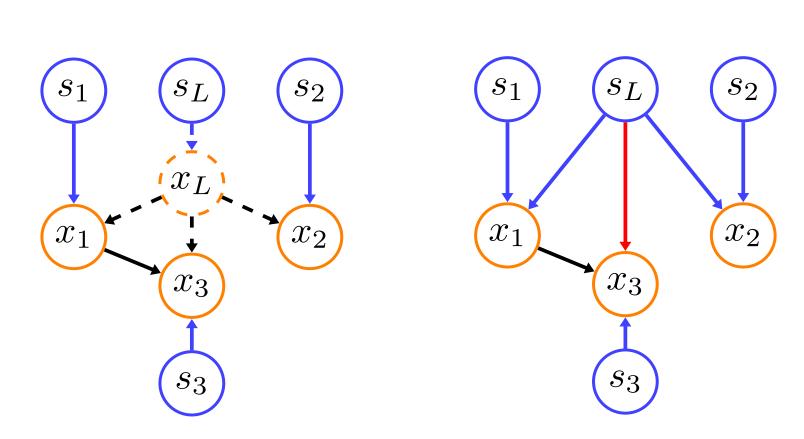
Theorem 2: Under distinct source assumption (DS-P-SCM), Conditions 1 and 2 can be reduced to Condition 3.

Condition 3: For each exogenous connection, there are either no other paths, or at least two other distinct paths from the source to the obs. variable.





Reduced to The search space in [2] is DS-P-SCM strictly smaller than in Thm. 2



True DS-P-SCM

- Satisfies the condition in [2]
- Uniquely identifiable

Corresponding P-SCM • Violates Thm. 2

 Not uniq. Identifiable as a P-SCM

Observationally equivalent P-SCM

- Not a DS-P-SCM
- Does not contradict uniq. identifiability when the starting assumption is a DS-P-SCM

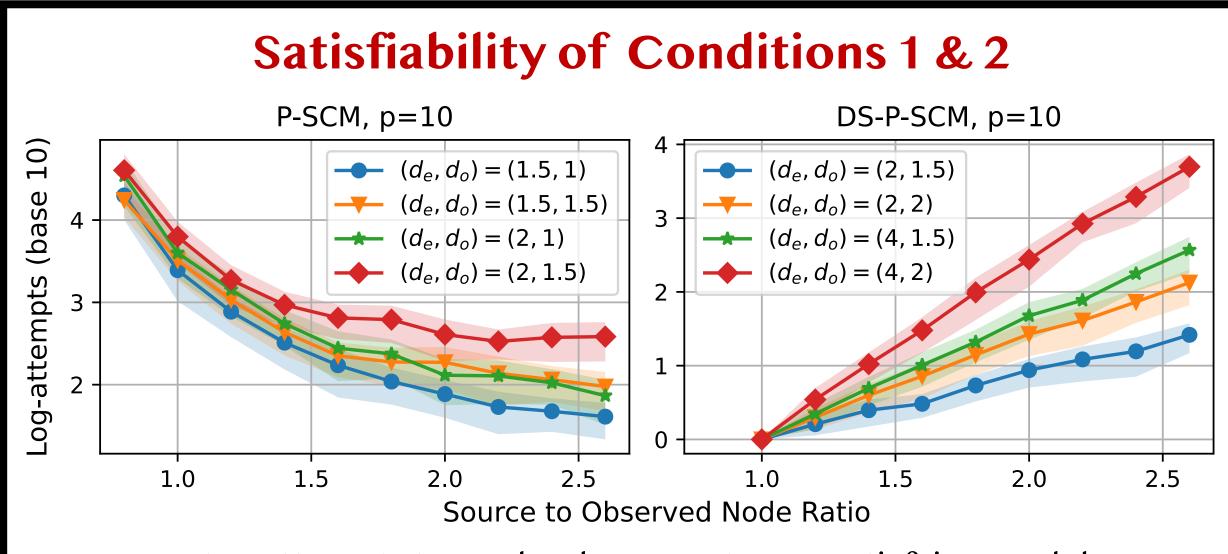
P-SCM Recovery algorithm

Input: Recovered mixing matrix $\tilde{\mathbf{W}}$.

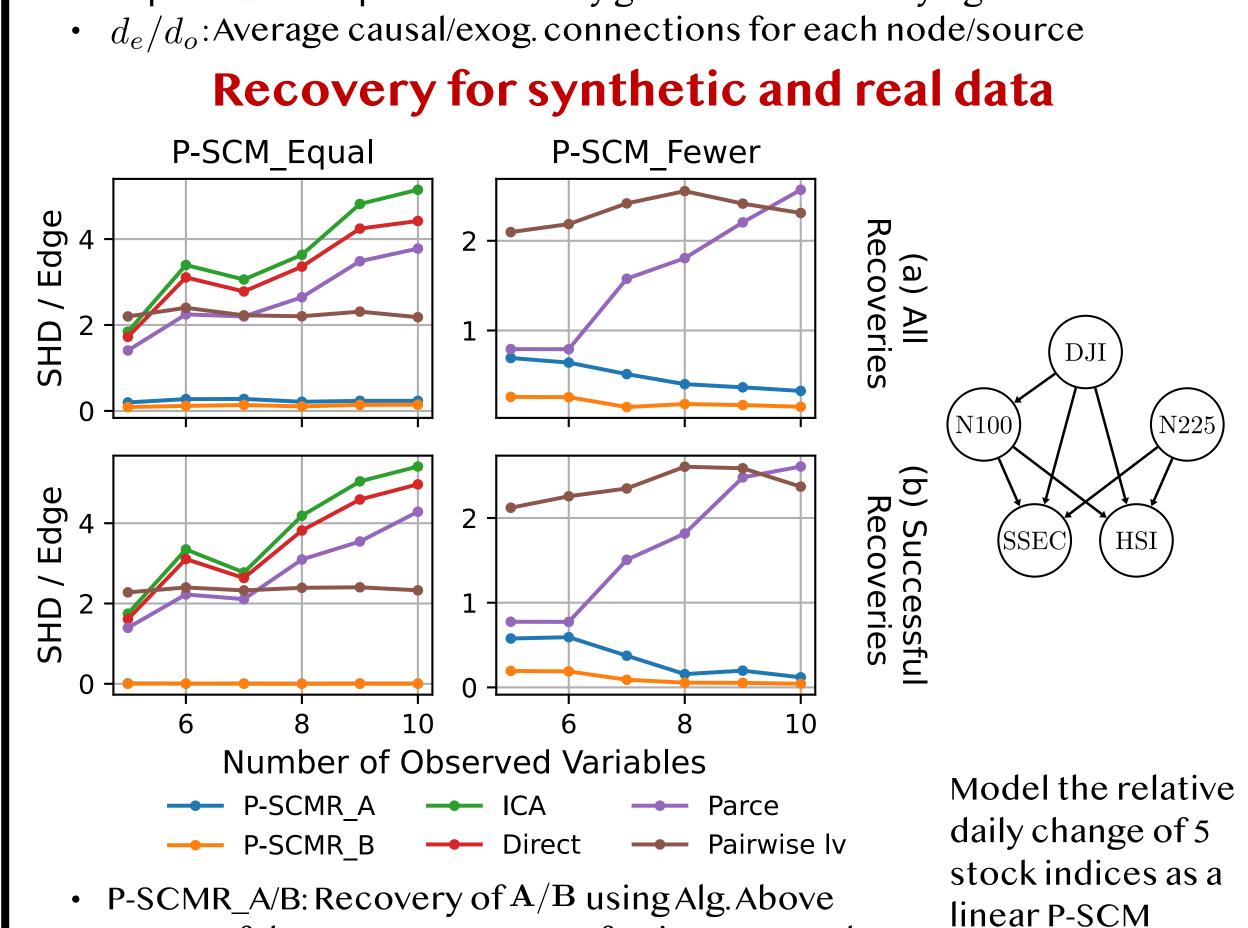
Output: Adjacency matrix A, exog. connection matrix B.

- Initialize: A = I, B = 0; // Total causal effect
- 2 Repermute $\hat{\mathbf{W}}$ s.t. the number of non-zero entries in each row is in an increasing order;
- 3 for $k = 1 : p \ do$
- Find possible parent set \mathcal{P}_k using **W**;
- Compute total causal effect from $x_i \in \mathcal{P}_k$ to x_k using unique components of x_i in an iterative manner, until no more unique components can be found in the last subset \mathcal{I}_k ;
- Compute total causal effect from $x_i \in \mathcal{I}_k$ to x_k by solving overdetermined linear system;
- Add remaining source components in x_k to the exogenous connections;
- $\mathbf{8} \ \mathbf{A} = \mathbf{I} \mathbf{A}^{-1};$
- 9 Repermute matrices A, B according to the reversed order from Step 2;

Experiments



Reports # attempts to randomly generate one satisfying model



1] Hoyer et al. "Estimation of causal effects using linear non-Gaussian causal models with hidden variables". International Journal of Approx. Reas., 2008. [2] Salehkaleybar et al. "Learning Linear Non-Gaussian Causal Models in the Presence of Latent

Successful recovery: Support of W is recovered

Variables". JMLR 2020.